Hallo, Gast
Sie müssen sich registrieren bevor Sie auf unserer Seite Beiträge schreiben können.



Durchsuche Foren

(Erweiterte Suche)

» Mitglieder: 2.868
» Neuestes Mitglied: hgfhhfghfghfgh
» Foren-Themen: 113
» Foren-Beiträge: 190


Benutzer Online
Momentan sind 100 Benutzer online
» 0 Mitglieder
» 97 Gäste
Bing, Google, UptimeRobot

Aktive Themen
Forum: Vorschläge
Letzter Beitrag: Richardhic
Vor 6 Stunden
» Antworten: 2
» Ansichten: 67
Check This Blog
Forum: Generelle Diskussionen
Letzter Beitrag: KellyNewman
25.11.2021, 19:20
» Antworten: 0
» Ansichten: 198
Algorithm of writing an e...
Forum: Generelle Diskussionen
Letzter Beitrag: LynnPayne
25.11.2021, 18:10
» Antworten: 3
» Ansichten: 1.014
Шугаринг Аравия
Forum: Generelle Diskussionen
Letzter Beitrag: Tracykelf
25.11.2021, 12:08
» Antworten: 0
» Ansichten: 37
Forum: Generelle Diskussionen
Letzter Beitrag: Richardhic
21.11.2021, 05:22
» Antworten: 1
» Ansichten: 603
Facebook's New 'Click-To-...
Forum: Generelle Diskussionen
Letzter Beitrag: Richardhic
21.11.2021, 04:57
» Antworten: 2
» Ansichten: 593
Лечебно-оздоровительный к...
Forum: Generelle Diskussionen
Letzter Beitrag: Marianna_Peds
19.11.2021, 10:09
» Antworten: 1
» Ansichten: 281
Где можно посмотреть обзо...
Forum: Community News
Letzter Beitrag: Dennislug
08.11.2021, 14:30
» Antworten: 2
» Ansichten: 277
Исключительно привлекател...
Forum: Generelle Diskussionen
Letzter Beitrag: Marianna_Peds
07.11.2021, 20:34
» Antworten: 2
» Ansichten: 501
State of the art baby str...
Forum: Generelle Diskussionen
Letzter Beitrag: ErvinCoste
07.11.2021, 16:22
» Antworten: 2
» Ansichten: 218

  Glass vs. Plastic Baby Bottles
Geschrieben von: lacaeias - 27.10.2021, 06:46 - Forum: Generelle Diskussionen - Keine Antworten

Glass vs. Plastic Baby Bottles

        Decades ago, the only baby bottle available to parents is made of glass. But glass was heavy and breakable. So when plastic bottles came along that were lighter and shatter-proof, the glass bottle became almost obsolete.
        However, recent reports that a type of plastic found in baby bottles might cause potentially harmful changes in developing babies has left parents wondering if perhaps old-fashioned glass wasn't such a bad thing after all.
        Which is safer, glass or plastic? Here is some background on baby bottles, along with tips on how to choose -- and use -- bottles safely and effectively.
        Baby Bottle Worries
        The problem with glass bottles is pretty obvious -- drop one on the floor in the middle of a late-night feeding, and you'll have a roomful of shattered glass to clean up. Glass is also heavy and cumbersome. On the upside, glass bottles are sturdy, and they don't contain any chemicals that could potentially get into the baby's formula.
        Plastic baby bottles are lightweight, strong, and unbreakable. In 2012, the FDA banned the use of bisphenol A in the manufacture of baby bottles and sippy cups. There were concerns that the chemical in polycarbonate plastic could lead to certain cancers, changes in the brain and reproductive system, and early puberty. All baby bottles and sippy cups sold in the USA are now BPA-free.
        In 2013, the FDA supported a food additive amendment to end the use of bisphenol A-based epoxy resins in the lining of formula cans. Manufacturers had abandoned the use of BPA in those maternal and child products, so the move was largely supportive.
        Choosing a Baby Bottle
        There are essentially four types of baby bottles: plastic, plastic with disposable liners, plastic with glass liners, and all glass.
        The ban on BPA means you can confidently buy new plastic baby bottles, knowing that they are free of the potentially harmful chemical. If you are using older plastic bottles, for example bottles given to you by family members, check the recycling symbol on the bottom.
    Is sippy cup a definite no-no?

    If you can manage without a sippy cup, great. My son was exclusively breastfed and transitioned directly to tumbler. No bottles or sippy cups for him.

    However, it is quite ok to use sippy cups during the bottle to cup transition period for a month or so. Then the children should be moved to regular tumblers or straw cups.

    Also, care should be taken that sippy cups are only used for travel, or when spills are not acceptable. When children are at home, they can use a regular tumbler or cup.

    Benefits of straw cups for toddlers

    Straw cups can be introduced to a baby from 9 months onwards. In a few months, they will develop the skills to drink from a straw without difficulty.  But make sure that your baby doesn’t suck too much liquid too quickly as this can cause her to choke and cough. This can be done by using a thinner straw or a thicker liquid like milkshake.

    The muscles used for drinking from a straw are the same muscles that are used to develop a better swallowing pattern and for uttering some speech sounds. This is the reason straw drinking is much better than drinking from a sippy cup.

    Though my little champ was already drinking from a tumbler, I thought a spill proof cup would definitely be helpful for travelling. So I bought a straw cup and handed it to my son.

    I still remember that weird moment – when I realized that sucking from a straw was not something that my child knew intuitively…. My cutie pie had no interest in his new possession. The cup got tossed to the back of a shelf.

    How to use a breast pump:

        Like any skill worth having, it might take you a bit of time to get the hang of using a breast pump. The key is to be patient, even if you’re not able to express as much as you’d like right away. After all, a breast pump won’t stimulate the same feelings in you as your baby does. But, withtime, your body will usually learn to trigger your let-down reflex when you pump, and the quantity of milk you express should increase.
        1: There’s no need to rush to start pumping…
        In the first four weeks, you and your baby work together to initiate and build your milk supply. If your baby is healthy and breastfeeding is going well, you won’t need a pump to help with this. Pumping is, however, really helpful if you need to be apart from your baby any time (see tip below). If not, enjoy this time with your baby and be reassured that even if you plan to pump regularly in future, there’s no need to ‘train’ your body to express milk in the first few weeks.
        2: …unless your baby is unable to breastfeed
        If your baby can’t feed directly from the breast, perhaps because she’s premature or has special needs, or you are separated for any reason, start double pumping breast milk as soon as you can after the birth.
        Research shows that starting to express within the first few hours (when a healthy newborn would usually have her first breastfeed) helps mums produce a higher volume of milk in the early days and weeks, giving their babies the best chance of being fed exclusively on mother’s milk.
        If you’re expecting your baby (or babies) to be born pre-term, in need of intensive care, or to have a condition that might make breastfeeding difficult, prepare yourself. Learn about expressing, source equipment you might need, and ask a healthcare professional, lactation consultant or breastfeeding specialist for support.
        There will probably be a hospital-grade double breast pump at your hospital or birth facility, so ask staff to show you how to use it. It’s important to remove milk from your breasts whenever your baby would normally drink – this means your breasts will still get the message to make milk. Aim for eight to 10 pumping sessions every 24 hours at first, and continue this frequency once your milk comes in.
    Do Babies Need Teethers?

    Baby teethers help soothe babies' swollen gums when they start teething. Chewing on a teether can provide some comfort to the baby, but there are many other reasons that babies like to put teether toys in their mouth to chew on. Babies generally try to put anything they can get their hands on (some can be dangerous) into their mouth at an early age. This encourages the baby to move their tongue inside their mouth. It helps them become aware of their mouth and strengthen facial muscles, as well as aid in speech production.

    Teether buying tips:

    Teethers made from rubber, silicone, plastic, or wood are available in the market. They come in different shapes, colors, sizes, and textures. They are typically made easy for the baby to hold on to. It is advised to buy toys that are specifically meant for teething. Teethers that are liquid-filled or have plastic objects that could break, cause injury, or choking should be avoided. The teethers should be phthalate and BPA (bisphenol A) free because these chemicals can be harmful to the baby. Several teethers are labeled as nontoxic but still contain BPA. Hence, parents should be careful when buying teethers. The teethers should also contain nontoxic pigments.

    Cleaning teethers:

    Teethers should be cleaned regularly and should not be shared between babies. The teether can be washed with soap and water or washed in the dishwasher every day. Teethers can be sanitized using wipes during the day.

    Selecting an Infant Toothbrush

    The ADA recommends you begin brushing your child's teeth as soon as they erupt (usually around six months). Brushing is essential because decay and cavities can happen as early as your child's first tooth. There are toothbrushes made for infants and toddlers. They are small and have extra-soft bristles, so they won't irritate your baby's gums. Your dental professional will guide you regarding the best toothbrush and toothpaste to use. Here are some options to consider:Teething brushes for babies and finger toothbrushes for toddlers are great for soothing sore gums during teething. Refrigerate them for added relief. Plus, it helps your baby or toddler get used to toothbrushing.Choose the right size for your child. Select a toothbrush that fits comfortably in your child's mouth. Infant and toddler toothbrushes usually have smaller, slightly rounder heads.Select a baby toothbrush style that has a chunkier handle and a no-slip grip. This helps with manual dexterity and makes it easier for your growing baby to grab and get used to holding.Electric toothbrushes are a great idea as your child grows. You can find musical or cartoon character themed kid versions for extra fun that will lead to at least twice daily brushing and on the way to a good oral care regime.

                When to Add Toothpaste
                According to the ADA, you should incorporate toothpaste into your child's oral care as soon as the first tooth appears. Use a tiny smear (grain of rice) of fluoride toothpaste for children younger than three years old.
                It's never too early to start a good oral care routine. Start right away with your baby. Use the right toothbrush and the right amount of toothpaste. You will enjoy many firsts with your baby, including that first tooth. Make sure to contact your dental care professional for an appointment as soon as it comes in.
    A Guide to Bottle Nipple Sizes: How to Choose the Right Level

    Baby bottle nipples aren't one size fits all. Here's how to choose a nipple based on your little one's age and desired flow level.

    Many new parents are surprised to learn that bottle nipples aren't one size fits all. Indeed, there are multiple nipple "levels" that correlate with your baby's age and desired milk flow. Knowing when to size up or size down can be a bit confusing, so we compiled this guide to understanding baby bottle nipple levels.

    What are Nipple Levels?

        Manufacturers categorize nipple levels by a baby's age; you can usually find this information on the product packaging. Here's a general breakdown, though the exact levels might vary between brands.
        Level 0: Preemie
        Level 1: Newborn (0-3 months)
        Level 2: Babies 3-6 months
        Level 3: Babies 6 months and older
        Level 4: Babies 9 months and older
        Nipple levels differ based on flow rate (how quickly your baby can get milk). Young babies take in smaller amounts at a time, so they need nipples with slower flow. These "level one" nipples tend to mimic breastfeeding because they require similar muscles. As babies grow, they drink more milk at a quicker pace, so they usually upgrade to nipples with a quicker flow.

  Difference between PP Board and PVC Board
Geschrieben von: lacaeias - 27.10.2021, 06:44 - Forum: Generelle Diskussionen - Keine Antworten

Difference between PP Board and PVC Board

    The difference between the PP board and PVC board cannot be confused. Most people think there is no difference between pp board and PVC board, and they often think they are the same. Otherwise, it is not the same from the materials of these two kinds of boards. The effect is different. How to distinguish the difference between PP board and PVC board?

    PVC board is also called decorative film and adhesive film. The raw material is a sheet made of PVC with a honeycomb mesh structure in cross-section, which belongs to a vacuum plastic film. Widely used in building materials, packaging, medicine and so on.

    PP board is a light general-purpose plastic that meets national health standards. It is characterized by odorless, odorless, and low density. There is no problem with boiling hot water. It can be used for a long time without distortion when the temperature reaches 100 degrees, and it can be steam-sterilized when the temperature reaches 120 degrees. Good electrical insulation properties, not absorbing water. Good chemical stability, it is difficult to chemically react with most chemicals. Finally, PP is resistant to corrosion, acid, and alkali. There are also shortcomings, not resistant to low temperatures, and easy to age in low-temperature environments. The solution is to separate the modified and added antioxidants.

    The heat resistance of the PVC sheet and the heat resistance of the PP sheet are shown once compared. The PVC sheet softens at the beginning of 80 degrees, differentiates at the beginning of 130 degrees, and releases HCL gas. Compared with the electrical insulation performance of PP board, it belongs to medium and low voltage and low-frequency insulation, but PVC can withstand most inorganic acids, alkalis, salts, most organic solvents and so on.

    The Benefits of PVC Walls

    When it comes to our homes, many people try to keep up-to-date with current interior design trends whilst ensuring that they’re practical and visually attractive.

    PVC wall panels are becoming increasingly popular for this reason. Simply put, these panels, made of PVC material, can come in a variety of patterns and designs and are becoming preferential over other wall alternatives such as tiles or paint.

    Where can PVC panels be used?

    There are a variety of places in which PVC panels can be installed around the home. One of the most popular is the bathroom, where the panels can be installed on the ceiling or floor. Bathroom PVC panels can also be used to create a wet room.

    Along with their popular use in bathrooms, PVC panels can also be used on kitchen walls. Their easy-to-clean nature means that any spillages can be wiped and removed instantly without leaving a permanent mark.

    The advantages of PVC walls

    PVC panels provide homeowners with many benefits, including:


    Due to their material, this type of wall panel is easy to clean. Any marks or stains on the panel can be removed instantly with a damp cloth and some dish soap, making them last much longer than other bathroom walling solutions.

    PVC panels are also much more hygienic than other wall types. This is because once they have been installed in your bathroom or kitchen, the panels are mildew-resistant and prevent bacteria from growing.

    Because PVC panels are such low maintenance, they’re a fantastic alternative for busy homeowners, who are looking to reduce the time they spend cleaning traditional tiled walls.

    Easy installation

    Unlike tiles, the traditional wall of choice for older properties, PVC panels are extremely easy to install. So much so that if you have a bit of DIY knowledge, you could even install them yourself!

    This easy installation comes as a result of the panels covering a much larger surface area than tiles. They don’t require grout to be used, making them a fantastic alternative to tiled bathroom walls.

    Variety of designs

    PVC wall panels can come in a wide range of styles, colours and effects, meaning that there’s always a solution to complement and enhance the current interior design of your room.

    And, because PVC can come in wood-effect and tile-effect panels, you’re able to experience the advantages of PVC panels whilst still enjoying the appearance of traditional wall designs!

            What is Foam PVC Board?
            Foam PVC Board is a lightweight, rigid material used primarily in the manufacture of signs and displays. It is considered robust for outdoor use as it is immune to rain and resistant to sunlight and wind.
            The material is made from polyvinyl and polyurea which are mixed together under controlled conditions. The mixture is then poured into a mould, which is sealed using clamps. It is then heated in a large press, after which a slab of solid material emerges.
            Finally, the material then undergoes a hot bath in order to expand it to a final density and it is then cured.
            All of our foam PVC boards are printed directly to substrate using UV fade-resistant and waterproof inks.
            PVC foam board is available in a range of thicknesses from 1mm to 25mm and used for a wide range of applications including interior and exterior signage, exhibition stands,
    What is Expanded PVC Foam Board?

    Expanded PVC foam board, also known as expanded polyvinyl chloride (PVC), is a lightweight, rigid form of expanded foam polyvinyl chloride. It is commonly used for commercial purposes like digital and screen printing, laminating, vinyl lettering, signage, and more.  Eco-friendly and non-toxic expanded PVC sheets provide strength, durability, and flame and chemical resistance while remaining easy to cut and shape.

    How is Expanded PVC Foam Board Made?

    Expanded PVC foam board may come in a variety of different densities; as a result, the raw ingredients used to make the plastic are mixed together under controlled conditions and then dispensed into a mold based on the desired application. The mold is then sealed, clamped shut, and placed in a large press where it is then heated. Finally, the material is expanded in a hot water bath to reach its final destiny and cured. Once cured, the blocks are cut into sheets of various thicknesses. An expanded PVC foam board can be cut to size as easily as wood, softened and shaped to fit a specific need.

    Not to Be Confused with Foam Board

    Expanded PVC foam board is often confused with foam board, but don’t get it twisted, there are vast differences between these two materials!  Foam board or foamcore, consists of polystyrene foam and can have an outer facing of paper on either side. It is frequently used for light duty, indoor applications. It is also popular to use as backing material in picture framing or in photography as a reflector to bounce light. Expanded PVC foam board is super durable, light, and flexible and made from a polyvinyl chloride. Unlike foam board, PVC boards are available in varying thicknesses and may be printed on either side. They are also excellent to use in outdoor applications since they are strong and resistant harsh weather.  Foam board is meant for indoor projects as it tends to melt away and dissolve when mixed with outside elements, glue, and certain types of paint. Expanded PVC foam board lasts longer than foam board is a preferred choice for signage, yard signs, menu boards, directional signs, and more.Expanded PVC foam board is relatively resistant to chemical abrasion and has low water absorption. This ultimately makes it ideal for both indoor and outdoor use—and is commonly used for outdoor applications, such as signage, because it is resistant to the damaging effects of rain, wind, and sunlight. PVC foam is also lightweight, meaning it can be transported more easily than alternatives like glass, wood, or metal. It can also be an affordable option for those who want to provide corrosion and flame resistance.

    Because of its strength and durability, expanded PVC foam boards are a good alternative to similar materials like polycarbonate plastic that may be more prone to scratching. In addition, their resistance to chemical damage makes them ideal compared to other plastics, like acrylic for example, that may be damaged when using powerful cleaners.

    Perhaps the most common use for expanded PVC foam boards is signage–specifically for outdoor usage where durability against corrosion is crucial. When business owners need a sign that can stand the test of time outside in the elements, they often turn to expanded PVC foam boards.

    Once again, because of its durability, it isn’t uncommon to find PVC foam boards for use as wall paneling or office furniture. It can also be utilized for photo mounting.

    In retail space, an expanded PVC foam board may be used for an exhibit booth, signage or a display. PVC foam sheets also come in a wide range of colors, making it more versatile option for commercial applications that call for durability, as well as pleasing aesthetics.

    Whether you’re interested in a strong plastic for promotional materials or interior design in an office space, expanded kitchen PVC panels may be the perfect solution for your needs.

    5 Reasons to Say Yes to PVC Wall & Ceiling Panels

    PVC panels are being popularly used as a cladding material for both walls and ceilings. They are versatile and can be used as an alternative to mineral fibre materials such as gypsum or POP. They can replace wall tiles in the bathroom and can also be used as a decorative wall cladding instead of materials such as MDF or wallpaper. So, if you are looking for an alternative to these conventional materials, then find out whether PVC wall and ceiling panels are the right way to go.

    1. Available in multiple options

    PVC wall and ceiling panels are available in a variety of colours, patterns and textures.

    These panels are also available as 3D sheets that give a decorative look to the wall, as in this example. The PVC sheets are available in both small sizes (the joint lines are visible on installation) and large sizes that give a seamless look to the overall design of the wall.

    2. Lightweight and durable

    PVC panels are a lightweight, strong and highly durable factory-manufactured material.

    They are very easy to transport, handle and install at site and do not create a dusty environment during installation.

    Advertising PVC panels can last for years without warping or bending.

    3. Highly water-resistant

    PVC wall and ceiling panels are made of a waterproof material which makes these panels highly resistant to water.

    The PVC panels are best suited for cladding the ceilings and walls of moisture-laden areas – for instance, bathrooms, basements, garages – which are prone to dampness.

    Another advantage is that these panels are fixed to each other with an interlocking system which prevents the entry of water.

    Since PVC panels are resistant to dampness they do not support mould or mildew growth.

    4. Low in maintenance

    PVC panels are very easy to clean. Routine cleaning involves just wiping with a damp cloth.

    The polyurethane layer of these panels gives a smooth and a plain surface to the board, which prevents the accumulation of dirt.

    Another advantage is that PVC panels are highly resistant to fading due to sunlight because of the presence of non-yellowing agents such as titanium dioxide in their chemical composition.

    5. Budget friendly

    PVC wall and ceiling panels are affordable, budget friendly and are recyclable.

    The best part about PVC panels is that once installed, the wall or ceiling is ready to use and does not require to be finished with paint or varnish.

    PVC panels are fixed with a tongue-and-groove system which ensures a fast and easy installation. Hence, a single panel can get replaced if it gets damaged.

  Solar Street Lights vs Traditional Street Lights
Geschrieben von: lacaeias - 27.10.2021, 06:43 - Forum: Generelle Diskussionen - Keine Antworten

Solar Street Lights vs Traditional Street Lights

    Solar street light and other solar products have grown in popularity over the years. Unlike traditional sources of light, solar lights don’t harm the environment. This is the reason why a lot of people are switching to this technology for their lighting needs. Moreover, solar lights do not rely on electricity providers; thus, you become spared from hefty electric bills.

    Solar street lights are outdoor light devices that are activated through the photovoltaic or PV panels. They have a rechargeable battery that can be loaded with electrical power when detecting light from a source such as the Sun.

    If you want to know more information about solar varieties, communicate with a China light manufacturer. Now, let’s compare the attributes of solar lighting and traditional lighting.


    It is widely known that for solar products, you will be required a costly initial investment. Hence, traditional street lights are much cheaper. However, in the long run, solar street lights turn out to be a better investment than the traditional ones due to all the expenses you will have to pay for in order to maintain the performance of your lights.

    Installation and maintenance are generally costly, but solar street lights do not require regular maintenance nor a replacement. There is only a need to keep them clean and away from dust.

    As for traditional street lights, they necessitate the setting up of electric poles, which can be very expensive. They need to be maintained regularly too, which will incur further costs.

    Efficiency and Luminance

    In terms of visibility, solar-powered lights closely simulate the sunlight as they have built-in LEDs. These LED lights give you the option to alter the CRI or color rendering index into the color of light that you desire. This improves visibility at night.

    On the other hand, traditional street lights typically possess metal halide lamps within. These high-intensity discharge lamps offer most of their light from the electric arc inside a compact emanation tube. Unfortunately, these cannot beat the visibility that solar-powered lights can provide you with. Solar lamps use LEDs or light-emitting diodes that surpass CFLs or compact fluorescent lamps in harnessing more energy and producing brighter light.


    Traditional lights last for approximately an average of 5,000 to 8000 hours or less than a year of usage whereas solar LED lights can live for 5 to 7 years. This notion always puts solar-powered lights ahead of the conventional lights.


    Solar street lights depend less on conventional energy and the national grid. For dusk to dawn lighting operations, solar products are totally reliable. Their off-grid nature equates to almost zero maintenance and low operational costs. Through the power cuts and grid disruption, these lights remain illuminated.

    Meanwhile, traditional street lights are always affected by grid failures and power cuts due to their being connected to the energy reserve.

    Good Impact on the Environment

    All in one solar street light poses no threat to the environment and its people. No fire can be ignited due to a lack of electrical wirings. In addition to that, accidents such as strangulation, overheating, and electrocution will never take place as well. They give off a lower quantity of carbon footprint than that of the traditional lights; thereby, making them eco-friendly.

    On the contrary, traditional lights generate illumination merely from electricity which gets disrupted every occurrence of grid failure. The main advantage of solar street lights is it uses renewable energy from the sun, whereas traditional lights rely on electricity generated from nonrenewable fossil fuels and limited by power outages.


    How do you increase the performance of a modern smart solar street lamp? Manage your lights remotely using a software solution. Observe which hours the pedestrian frequency peaks and drops. Once known, adjust the lighting schedules of solar lights accordingly.

    How do they work day and night? Solar cells in the PV panels of a solar street light convert the heat of the sun (solar energy) to electricity (electrical energy). Afterward, the solar energy is stored in the rechargeable battery. When the dark starts crawling in, solar lights operate using the energy stored in the battery. The few things that make solar in need of maintenance are these: maintenance of the smart battery control systems, minor preventive maintenance, assessment of design, and performance.

    Traditional street lights consume more electricity and require more maintenance and repair from time to time. Operational costs are higher as well.

    Weather-Proof Lights

    Lastly, one of the major concerns in choosing a street light is its durability. How can it stand still amidst the storm? Solar street lamps are weather-proof and water-proof. It’s not a problem if they do not receive sunlight for a few days, they can utilize the rest of the stored solar energy converted into electrical energy.

    Traditional street lights, on the other hand, are not primarily designed to completely stand extreme weather conditions. Although some have a feature that can withstand varying kinds of weather, others are easily damaged by constant typhoons.

    To summarize, solar-powered LED lights are considered one step ahead of the traditional lights. Today, lights with smart technology are in demand. There is no doubt that they can provide more than what is needed by users. Solar street lights also encourage activities such as walking, cycling, going to parks, etc. They increase the productivity of people and visibility at night.

    5 Common Myths about LED Street Lighting

    The potential effects of LED street lighting on health and the environment have been a hot topic of discussion over the last year. As this conversation has evolved, so too have many misperceptions and mischaracterizations of the facts on LEDs. We’ve assembled an array of helpful resources on the topic to help shed some light  and are clarify some of the most common myths on LED streetlights.

    Myth: LED streetlights are more harmful to humans and animals than other kinds of streetlights.

    LED streetlights are no more harmful to humans and animals than other kinds of streetlights. The concern is not the type of light source, but the amount of emitted light that falls in the short-wavelength, often referred to as the “blue” part of the spectrum. And, unlike other types of streetlights, LED streetlights actually offer the potential to control the amount of short-wavelength light that they emit.

    Myth: All short-wavelength light is harmful to humans and animals.

    On the contrary, short-wavelength light is a fundamental component of the natural world. It’s present in sunlight and has been shown to play an important role in a number of physiological processes, such as affecting circadian rhythm (our 24-hour “biological clock” that controls sleep/wake cycles). The concern is that too much nighttime exposure to short-wavelength light may disrupt sleep patterns and have other undesirable effects.

    Myth: LED lighting emits more short-wavelength light than do other lighting technologies.

    It’s true that early LED lighting products tended to have greater levels of short-wavelength content because the technology was still in its initial stages of development. Tremendous advances since then, however, mean that today’s LEDs can be designed to emit as little, or as much, short-wavelength light as desired, without excessive drop-off in efficiency or other aspects of performance. LEDs also offer much greater control over where the light falls. This means they can often meet the same illumination requirements as conventional streetlights while emitting much less light – thus reducing even further any short-wavelength content.

    Myth: Street lighting should never emit any short-wavelength light.

    Most street lighting situations benefit from having at least some amount of short-wavelength content. Short wavelengths are a key component of the visible light spectrum, with benefits ranging from aesthetics to safety. White light sources that contain short wavelengths, for example, can show the colors of objects more naturally, aid in identification of people and objects, improve the contrast between an object and its background, and enhance peripheral vision at the low levels of illuminance that typically characterize street lighting.

    Myth: Communities are better off with conventional street lighting.

    For the last several decades, most street lighting in the United States has used high-pressure sodium (HPS) technology, which emits orange-yellowish light. HPS street lighting is being replaced by street lighting technologies that emit “white” light – primarily LED, due to its higher efficiency and longer life. All white-light technologies – including LED – emit more short-wavelength light than HPS. In addition to lasting longer and being more efficient – which by the way provide substantial energy and cost savings – LED street lighting also offers other potential benefits. For example, unlike other types of street lighting, LED systems can be adjusted to provide only the level of illumination needed at any given time, and can also offer a high degree of control over the direction in which light is emitted. This makes it much easier to reduce glare, light trespass (the spillover of light into areas where it’s not wanted), and uplight (which contributes to the phenomenon of “sky glow” that reduces visibility of stars in the night sky).

    LED street light can play a critical role in avoiding unintended consequences to humans and wildlife – as long as care is taken to make sure the light is directed only where it is needed, with minimal glare, and that it emits a spectrum that supports visibility, safety, and health.

    LED Floodlights: the Advantages

    Floodlighting has become an important part of security for homes and businesses alike. Whether connected to a motion detector or for use to light a garden at night, flood lighting has become an integral part of security in today’s society.

    Homeowners and businesses have enough to deal with in these harsh economic times than needing to worry about changing floodlights. That’s why LED flood light offers the client not only an exceptional dispersion of light but also a bounty of advantages, which are only available when you use LED Floodlights.

    One of the best advantages of using LED Floodlights is the life expectancy; they last for thirty times longer than standard halogen floodlights. This reveals a variety of advantages: you will have more free space as you would not need to stock up on replacement halogen bulbs. Also the main power involved in swapping out defective halogen bulbs can be time consuming and expensive, especially if running a business which requires the use of floodlighting. Thus purchasing LED Floodlights works to be extremely cost effective for the client. LED Floodlights repay your investment with longer life and an exceptional reduction in electricity costs.

    With rising utility prices everyone is looking to save money. Through switching to an LED Floodlights customers will see a fall in their electricity consumption and in turn bills. The LED Floodlight will consume a significantly reduced number of watts compared to a halogen Floodlight, providing the client with an exceptional visual performance as well as low cost electricity bills. LED Floodlights feature economical illumination technology. This technology is also known as Light Emitting Diodes (LED light bulbs); this allows you to have exceptional brightness with a low power consumption.

    LED Floodlights have a higher lumen output than standard Floodlights. One LED Floodlight can have the same effect as two or even three standard Floodlights. This is a staggering statistic and it means that with the longer life expectancy and the exceptional brightness less room would be needed for storing your existing halogen equivalent floodlights. It also now means that security for your home and business is now affordable and is most importantly cost effective.

    It is important to note when looking to install floodlights for outside use that they are IP65 rated. This means that they have been designed and tested to withstand weather conditions and are safe for outside use. This special rating of IP65 is not to be overlooked as it is essential to the performance of the light when used outside.

    Portable floodlights are also available on the market and our ideal for workers at night. By incorporating a battery to floodlights workers can experience high quality LED lighting by only consuming a fraction of the electricity of an ordinary halogen floodlight. This has many advantages such as safety for the workers as a clear bright illumination. Also these would need to be IP65 rated also as even in the most testing weather conditions the clear, crisp light will continue to emit.


    Solar energy is the technology used to harness the sun's energy and make it useable. As of 2011, the technology produced less than one tenth of one percent of global energy demand.

    Many are familiar with so-called photovoltaic cells, or solar panel, found on things like spacecraft, rooftops, and handheld calculators. The cells are made of semiconductor materials like those found in computer chips. When sunlight hits the cells, it knocks electrons loose from their atoms. As the electrons flow through the cell, they generate electricity.

    On a much larger scale, solar-thermal power plants employ various techniques to concentrate the sun's energy as a heat source. The heat is then used to boil water to drive a steam turbine that generates electricity in much the same fashion as coal and nuclear power plants, supplying electricity for thousands of people.

    How to Harness Solar Power

    In one technique, long troughs of U-shaped mirrors focus sunlight on a pipe of oil that runs through the middle. The hot oil then boils water for electricity generation. Another technique uses moveable mirrors to focus the sun's rays on a collector tower, where a receiver sits. Molten salt flowing through the receiver is heated to run a generator.

    Other solar technologies are passive. For example, big windows placed on the sunny side of a building allow sunlight to heat-absorbent materials on the floor and walls. These surfaces then release the heat at night to keep the building warm. Similarly, absorbent plates on a roof can heat liquid in tubes that supply a house with hot water.

    Solar energy is lauded as an inexhaustible fuel source that is pollution- and often noise-free. The technology is also versatile. For example, solar cells generate energy for far-out places like satellites in Earth orbit and cabins deep in the Rocky Mountains as easily as they can power downtown buildings and futuristic cars.

  The Features of an Automatic Filling Machine
Geschrieben von: lacaeias - 27.10.2021, 06:35 - Forum: Generelle Diskussionen - Keine Antworten

The Features of an Automatic Filling Machine

    Overflow fillers, gravity fillers, piston filling machine and other liquid fillers all vary in the way that they move product into a bottle or container. However, the automatic versions of these machines almost always have certain features in common. These features are intended to add efficiency, consistency and reliability to the packaging equipment. Below are a few of the most common features of found on Liquid Packaging Solutions' bottle fillers.

    Heavy Duty and Portable Stainless Steel Frame

    For consistent and reliable fills, the machine must be stabile throughout the process. The heavy duty stainless steel frame protects against shifting, vibrating and other movement that might effect the volume or the level of the fill, while also avoiding splashes and spills. The stainless steel material is compatible with a vast majority of products, though there are exceptions. When corrosive liquids are run on the machinery, other construction materials may be used for the frame, including HDPE. Ultimately, the material used will be that material which will better extend the useful life of the equipment.

    Easy Adjustments From Height to Heads

    Many packagers fill more than a single product, or at the very least fill into bottles of multiple sizes and shapes. Changing over from one product or bottle to another means stopping production on the liquid filler. These machines include simple adjustments to minimize downtime and maximize production. Fill heads can typically be moved using simple fingertip adjustment knobs, while power height comes standard on automatic equipment, allowing up and down movement with the flip of a switch. Even auxillary equipment such as power conveyors include knob adjustments or other simple components for railing and other changes. Other adjustments, such as time and delay settings, can easily be made from the operator control panel, discussed in more detail below.

    PLC with Touch Screen Controls

    Along with easy adjustments to the components of the liquid filler, the Programmable Logic Controller (PLC) and operator interface allow the operators of the equipment to quickly and easily set up indexing times, fill times and other settings for the machinery. The panel allows controls to be centrally located and may also include controls for other equipment such as power conveyors, turntables and more. One of the best features of the PLC is the ability to record recipes for product and bottle combinations. Once all settings have been input for a combination, the combination can be saved and recalled at a later date, making changeover that much easier.

    Vision Systems

    Automatic fillers are normally one of many machines on an automated packaging line. So in addition to performing efficiently and effectively, these machines must work with other equipment such as the conveyor system noted above, capping machines, labelers and any other machine on the system. An anti-bottle back up vision system helps the filling machine with communication. These vision systems are used to ensure jams and back ups downstream do not have a negative impact on the filler. If a jam is detected, the liquid filler will usually complete the current cycle and then cease cycles until the issue is cleared. In addition, automatic machines include a no bottle, no fill vision system to ensure that the cycle will only begin when the correct number of bottles have entered the fill zone. Depending on the filler, this vision system can help to avoid messy spills while also ensuring maximum efficiency. Other custom vision systems may be used with the filling equipment if the need arises.

    Two to Sixteen Heads with an Upgradeable Design

    Automatic liquid fillers will normally be manufactured with anywhere from two to sixteen fill heads, depending on the production demand for the product or products being run. The design of the two head filling machine, however, will usually include the ability to easily add heads in the future. In other words, the machines are upgradeable to up to sixteen fill heads, regardless of the number of heads on the equipment when delivered to the packager's production floor. This design allows the equipment to grow with the packager, extending the useful life of the machine and saving the packager from needing new equipment every time sales increase.

    While there are many other features that may be added to a used filling machine, the features noted above are normally standard on all equipment. To learn more about the different filling machines and custom equipment offered by Liquid Packaging Solutions, jump over and browse the filling machinery section our the website.

    Homogenizer, equipped with a set of motorized blades, combine wet grinding/shredding/shearing of the sample matrice together with extraction by swirling/agitation of the sample solution. They are popular in Karl Fischer analyzers, robotic systems and tissue homogenizers.


    A straw and spoon applicator is an automatic machine. It works in a relatively simple way:

            ●    the belt conveys the products from the filling machine at the start of the line
            ●    the applicator sprays the glue
            ●    the application head secures the straw in the desired position
            ●    the product is conveyed to the case packer or the shrink wrapper at the end of the line.
    Thanks to its photocell system, the automatic straw applicator works autonomously, detecting products and downtimes.

    The straw applicator can apply up to 10,000 straws per hour; in the high speed version, the amount increases up to 18,000 straws per hour.

    By adding another drum unit, straws/spoons can be applied on multi-pack formats on a double line, thus doubling machine performance.

    The machine's flexibility enables the application of different types of straws - U-shaped, telescopic, straight - without having to replace mechanical parts. To modify the pace of the straws, a simple and quick replacement of the drum unit is needed instead.


    The best straw applicator on the market is the one perfectly fitting your needs!

    Versatility is therefore key when choosing a straw applicator. The automated system must handle spoons and straws coming in different dimensions and formats (straight, telescopic, U-shaped), providing the option to choose direction and application side. It must also accommodate packages differing in height and volume, as well as multi-pack formats.

    In view of potential product integrations, a must-have feature is the bypass function, which enables alternate applications (one pack comes with a straw, one without).


    Straw and spoon applicators are automatic machines requiring very low maintenance.

    Proper planning is crucial to streamline standard processes, in particular for complex components, such as the glue unit, both for refilling and maintenance operations.

    When handling packed liquids, which require aggressive cleaning to avoid the risk of contamination due to leaks, machines should be equipped with high-quality electronic components, to guarantee safety and reliability over time.

    Ultimately, application precision is another important aspect. The applicator must guarantee a perfect positioning of the straw or spoon over time, to avoid waste and downtimes.


    The philosophy guiding Artema Pack in the planning and production of straw applicators is clear: the machine must adapt to the client's processes and not the other way around.

    Thanks to this approach, the company was involved in complex projects, coming up with innovative solutions, such as applying straws on non conventional materials or positioning them in unusual areas.

    With an Artema Pack straw applicator, you can count on a high-performing and reliable machine, and also on yearlong expertise, which enables us to turn specific needs into solutions.

    Tetra Pak packaging solutions for food and beverages

    Every day, across the world billions of litres of water, milk, juice and other liquid foods are consumed. At Tetra Pak, we have developed a range of packages to protect both the nutritional value and the taste of the products inside. Thanks to tetra pak packer, the packaging and distribution of liquid and food products to the consumer has been greatly facilitated.

    We provide integrated processing, packaging, and distribution solutions for food manufacturing, and offer packaging machines for different packaging alternatives. From our network of production facilities, we also supply packaging material to more than 8,800 packaging machines across the globe.

    Digitalisation is changing the role of packaging. The Connected Package allows food and beverage producers to turn their packages into full-scale data carriers offering increased traceability, and value for each stakeholder in the entire value chain.

    No longer is packaging only about product protection and functionality – it is about connectivity and unleashing unlimited possibilities.

  Flatbed Trailer Types
Geschrieben von: lacaeias - 27.10.2021, 06:33 - Forum: Generelle Diskussionen - Keine Antworten

Flatbed Trailer Types

    Flatbed trailers come in all shapes, sizes, and maximum load capacities. Some of the most common types of flatbed trailers and specialized trucking trailers include:

            Lowboy Trailers
            Step Deck Trailers
            Stretch Double Drop Trailers
            Removable Gooseneck Trailers (RGN)
            Conestoga Trailers
            Sidekit Trailers
    It is essential to note the maximum legal load weight of the cargo as well as the dimensions of a particular type for proper and accurate flatbed & specialized trucking rates.

    Each flatbed trailer is different from the other types, and it is essential to note the maximum legal load weight of each. While most of the trailers mentioned in this article are capable of handling loads that exceed the legal dimensions and weights for safety, some states will require a permit and/or have premium charges that will need to be obtained before a shipment can be transported.

    Flatbed trailers are widely used and highly versatile, making them one of the most popular trailers seen on the roads today. Typically, freight is loaded onto the tip, sides, and rear of the flatbed. With this easy loading capability, flatbeds have become one of the cornerstones of today’s trucking industry.

    A flatbed trailer can carry a maximum legal freight weight of 48,000 pounds.

    A lowboy trailer is an unpowered trailer, commonly used to haul freight. With a lowered bed in front of the rear axels, lowboys are designed to transport taller goods that would exceed the height restrictions if carried on a flatbed. Depending on the freight, some states require may permits.

    Lowboy trailers generally have two axles with a maximum load weight of 40,000 pounds. An additional weight capacity of up to 80,000 pounds will depend on the number of axles used (weight of the trailer + weight of the load).

    How Does a Dump Trailer Work?

    Hydraulic dump trailers are the most efficient type of dump trailer, making cleanup significantly easier at the end of a job. Here, we cover the basics of how different hydraulic lift systems function as well as what to consider when buying a dump trailer to help you streamline the decision process.

    Hydraulic Dump Trailer Operation

    Using a dump trailer is more detailed than just towing it to the site, loading it with trash, and hauling it to the dump.

    The most valued feature of the hydraulic dump trailer is its hydraulic lift system for obvious reasons. The hydraulic lifting capabilities allow users to tilt the container in order to dump its contents with very little contact, reducing the risk of puncture wounds and splinters from debris.

    There are three main types of lifting mechanisms:

            Telescopic-style lift - A single cylinder lifts the dump bed of this hydraulic trailer to its full dump angle. Manufacturers typically put this in the center of the dump container’s front end.

            Dual-piston lift - As implied, this system uses two pistons to lift the dump trailer.

            Scissor lift - Most popular. The scissor-like function of one cylinder allows for maximum leverage while dumping and also expands the footprint to help with uneven loads.
An article by Family Handyman notes that the battery life of a hydraulic trailer can be cut in half if the hydraulic system uses it when lowering the dump box. However, the “gravity down” option on some trailers doesn’t utilize the battery, which means you likely won’t need to replace it as often.

    Rigins of the semi-trailer truck

    At the dawn of the 20th century, transportation was going through a period of transformation. With the development of the first practical automobile in the late 19th century and invention of Henry Ford’s assembly lines, making cars became more affordable and accessible than ever before, thus thrusting transportation into a new era.

    With automobiles cornering the market, other automotive-based inventions popped up too. A great example of this is the semi trailer. Two different inventors are credited with its creation, each design serving a similar purpose.

    The trailer was a success, so successful in fact that Sibley Sr. had Fruehauf build similar vehicles to use at his lumber yard. Fruehauf called these vehicles “semi trailers.” Fruehauf’s semi trailers were a success, business boomed, and four years later, Fruehauf incorporated his business to form the Fruehauf Trailer Company in 1918.

    Which Material can be delivery by bulk cement powder tanker trailer?

    Bulk Cement Powder tanker semi trailer can loading for coal ash ,cement powder, lime powder ,Mineral powder etc, all the diameter less than 0.1mm . Also we can gave you the tanker trailer delivery for wheat powder as you wanted.

    If you’re interested in expanding your hauling capacity, a cargo trailer is an excellent option. You’ll no longer need to pack your vehicle to the rim while carefully trying not to obstruct the view out of your rear window. You can also stop making multiple trips back and forth due to lack of space. Even better, you don’t have to drape a tarp over exposed supplies in your truck bed to protect them from the elements. Hauling activities will be so much easier with a cargo trailer.

    Cargo trailers are fully enclosed making them a great choice for hauling vehicles and equipment safely. Mountain West Trailers has put together a list of our favorite uses and benefits of owning a cargo trailer. Be sure to stop by our dealership in Heber City, Utah near Salt Lake City, Provo, Wasatch, and Summit County today!

    Variety of Uses

    You’ll be able to tackle an impressive amount of projects with a cargo trailer considering you can pack almost anything inside. For those working in construction or landscaping, you can use the trailer to haul equipment, tools, and materials to a job site. You’ll be able to conveniently pack everything and haul it one trip, which significantly cuts down travel time. If you’re an adrenaline junkie, you can benefit from hauling your powersports vehicle to and from destinations. Campers can pack all of their gear and supplies in the trailer and bring it to the campsite. Cargo trailers can be quite useful to pretty much anyone!

    Gas Trailer fueling solutions are DOT compliant and designed to provide safe storage and transfer of up to 119 gallons of fuel for general aviation and boating, construction, disaster relief, and agriculture.

    “The new Gas Trailer division is a great addition to Robinson and our tradition of delivering quality products that exceed customer’s expectations,” says Sam Thomas, operations manager for Robinson Metal, Inc.

    Robinson will begin production of the Gas Trailer product line this summer at our 185,000 square foot facility on Eisenhower Drive in De Pere, Wisconsin.

    Side dump semi trailer is another type of dump truck, and it allows goods to be unloaded from the side. The main types of cargo transported by this semi-trailer are building materials, such as stone, sand, etc.

    Container Chassis: Everything You Need To Know

    Container chassis come in several types depending on the shipping requirements, designed to accommodate a range of weight load, container sizes and types, and even specialized containers. This one equipment links and carries the weight of several industries together. It is the support system of the entire supply chain network. Read on to know everything about this super-equipment…

    Container chassis is a specially designed container transport trailer or wheeled carrier to transport containers from trucks between terminals, warehouses, and ports. Design-wise, this equipment is a steel frame with tires and axle systems, suspension, brakes, and lighting mechanisms. New-aged chassis also come with other features like ABS, weight sensors, LED lights, GPS tracking systems, etc. Chassis are key links for container movement and transportation.

    Standard chassis are designed to transport standard ISO containers (20ft and 40ft) with two axles. Generally, a tri-axle chassis is needed to carry 20ft containers above the weight of 36,000 lbs or 40ft containers above 44,000 lbs.

    Why You Need a Container Chassis?

    1. Smooth & Secure Shipping

    Containers are securely attached to the chassis, due to which it prevents unnecessary container movements, thus, ensuring safer transportation.

    2. Durability and Easy Transportation

    Even though container chassis are constructed from lighter materials, it is durable enough to load and transport heavy freights with ease.

    3. Suits Different Shipping Requirements

    Container chassis come in different types depending on the specific needs. Thus, companies can choose from a wide range of options based on their shipping needs and preferences.

    4. Quick, Cost-Effective and Offers Timely Delivery

    Container Chassis are built from solid structural materials, capable of loading several containers in one go – making the process quick. Due to timely delivery, extra charges can be prevented, thus making the whole process cost-effective.

    5. Uplifts Customer Satisfaction

    Since the containers are shipped quickly and safely, it improves reliability and amping up the overall customer experience.

    How To Choose The Right Container Chassis?

    Depending on your requirements, businesses can choose the best container chassis for their daily operations. You can consider the following factors:

    ● Usage & Requirements (Industry-specific)

    If you only need to transport containers, chassis modeled specifically for containers are the best. But, if you need to move other types of cargo as well, going for a flatbed container trailer is the best – as it serves a dual purpose. If you need to load/unload cargo at specific places, a chassis trailer with a tilt feature is a great choice.

    ● Number of Axles / Weight Threshold

    Depending on the cargo or container weight, you can choose the number of axles in the chassis. More the number of axles, more the load capacity. For daily usage, 2 or 3 axle chassis are common.

    ● Costs Incurred

    Specialized chassis have higher costs than regular ones. Consider your container specifications and requirements before going for a specialized chassis or chassis trailer.
Container Chassis: Buying or Renting?
Chassis can either be rented or purchased based on your requirements. This also adds to your final costs of shipment.

    If you want to buy a container chassis, costs start from USD 5,000 and can go up to USD 30,000 – varying according to your specifications. However, if you need to rent a chassis, you need to incur an additional charge: Chassis Usage Charge.

  Cistanches Herba: A Neuropharmacology Review
Geschrieben von: ptipeias - 26.10.2021, 06:06 - Forum: Generelle Diskussionen - Keine Antworten

Cistanches Herba: A Neuropharmacology Review

    Cistanche extract products (family Orobanchaceae), commonly known as “desert ginseng” or Rou Cong Rong, is a global genus and commonly used for its neuroprotective, immunomodulatory, anti-oxidative, kidney impotence, laxative, anti-inflammatory, hepatoprotective, anti-bacterial, anti-viral, and anti-tumor effects in traditional herbal formulations in North Africa, Arabic, and Asian countries. The major bioactive compound present in this plant is phenylethanoid glycosides. In recent years, there has been great important in scientific investigation of the neuropharmacological effects of the bioactive compounds. The in vitro and in vivo studies suggests these compounds demonstrate neuropharmacological activities against a wide range of complex nervous system diseases which occurs through different mechanisms include improving immunity function and kidney aging, anti-lipid peroxidation, scavenging free radical, inducing the activation of caspase-3 and caspase-8. This review aims to summaries the various neuropharmacological effects and mechanisms of Cistanches Herba extracts and related compounds, including its efficacy as a cure for Alzheimer’s disease and Parkinson’s disease with reference to the published literature. Which provides guidance for further research on the clinical application of Cistanches Herba.


    Cistanches Herba, the dried stem of Cistanches species Cistanche deserticola Y.C.Ma (Figure 1) and Cistanche raw materials, is recorded in the Chinese Pharmacopeia (Committee, 2015). Other non-official species, such as C. sinensis Beck and C. salsa (C. A. Mey) Beck, are also used as Cistanches Herba in certain regions of China due to resource shortage. Cistanches Herba is one of the most valuable herbal drugs in traditional Chinese medicine, which supplements kidney functions, boosts the essence of blood, and moistens the large intestines to free stool (Medicine, 2005). Therefore, it is called “desert ginseng” in China because of the excellent medicinal functions and nourishing effects (Wang et al., 2012). Cistanches Herba, a global genus of holoparasitic desert plant, which is primarily endemic in North Africa, Arabic, and Asian countries (Nan et al., 2013). The primary producing areas of Cistanches Herba in China are Inner Mongolia and the provinces of Xinjiang, Gansu and Qinghai.

    Several chemical groups were isolated from Cistanches Herba, including PhGs (Figure 1), lignans, iridoids, and polysaccharides (Chen et al., 2013). Pharmacological studies demonstrated that Cistanches Herba exhibits neuroprotective, kidney impotence, laxative, anti-inflammatory, hepatoprotective, immunomodulatory, anti-oxidative, anti-bacterial, anti-viral, and anti-tumor effects (Hu and Feng, 2012). And our previous studies have distinguished Cistanches Herba from different geographic origins using a combination of DNA barcoding and UPLC-Q-TOF/MS technology.

    The Consumer Price Indexdatabase of China reports that 58 drugs from 12 different groups, including glycosides of Cistanche capsules and compound Cistanche Yizhicapsules, are authorized for the treatment of AD. Cistanches Herba wine and tea are produced in Alashan, Inner Mongolia, China, which might assist in Runchang catharsis and enhance the immune, endocrine regulation, and anti-aging systems of the body. Boschnalosides used as a therapeutic agent in Japan to treat sexual dysfunction and amnesia, and echinacoside is used in healthcare products in the United States to improve immunity (Cheng et al., 2005).

    Some researchers recently focused on the neuroprotective effects of Cistanche health products, but these effects have not been studied thoroughly (Table 1). This review presents and analyzes recent developments in the neuropharmacology of Cistanches Herba and provides a reference for the further study and clinical application of this medicinal plant.

    Cistanches Herba medicines have a long history of practical use, but scientists worldwide only began to disclose their chemical composition in the1980s. Figure 2 shows an analysis of the related literature. The cumulative histogram shows the number of studies increased over time, and the Chinese literature occupies the greatest proportion, which reveals the potential research value of Cistanches Herba. Figure 2A shows that the neuropharmacology related literature occupies the largest proportion of the nine areas of pharmacology, and this topic has become the most important area for research. Figure 2B exhibits the chemical research diversity of Cistanches Herba, with a substantial proportion of research on content determination. Further research may focus on neuropharmacology and component content.

    Cistanches Herba has a long history as a medicinal plant in China and Japan because of its wide spectrum of pharmacological activities. It is commonly called Rou Cong Rong in Chinese, and it was first listed medicinal use as a tonic agent in the Chinese Materia Medica Shen Nong’s Herbal Classic (Estern Han Dynasty) 2000 years ago, and later recorded in Yao Xing Lun in 1590. The Compendium of Materia Medica (Ben Cao Gang Mu, 1619) documented that Cistanches Herba invigorated the kidney to treat kidney deficiencies and geriatric constipation strengthened and nourished marrow and essence, protected semen, and moistened dryness to relax the bowels. 

    These properties were also written in Ben Cao Hui Yan in 1619. A total of 200 medicinal books recorded the pharmacodynamics and use of Cistanches Herba in Chinese history. Cistanches Herba ranks first in Chinese traditional medicine to strengthen prescriptions, which ranks second in anti-aging prescriptions at the same time, behind Panax ginseng in past dynasties. Modern pharmacological investigations demonstrated that Cistanches Herba was used as a kidney-yang reinforcing Chinese medicinal tonic, but it is also exhibits anti-aging, improves memory, and enhances immunity effects (Table 1), which indicate that extracts or constituents from Cistanches Herba have a promising future for the treatment of diseases, particularly nervous system disorders. However, systematic data on the pharmacological activities of this agent is lacking. It is urgent and important to study the pharmacological effects and mechanisms of Cistanches Herba deeply in the future.

    Aging is an inevitable process of life. This process involves a series of degenerative changes in tissues and organ functions with advancing age. Studies on aging and anti-aging medicines have made significant progress in recent years. Therefore, anti-aging drugs are a current and prominent issue in gerontology. The aging process reflects a confluence of in vivo and in vitro factors. Aging is closely related to type 2 diabetes, atherosclerosis, and AD. Aging is also related to the decreased regeneration of cells, viscera deficiency, increased free radicals, body poisoning, and lack of rhythm when eating (Lopez-Otin et al., 2013). Aging is an inevitable process, but delaying this process is now possible.

    Several historical Chinese herbal pharmacopeias describe that Cistanche tubulosa supplements possesses anti-aging properties. PhGs and oligosaccharides are two types compounds isolated from Cistanches Herba that are the main active ingredients of this plant. In vivo studies established an aging mouse model caused by D-galactose. The mice were divided into normal control, model, Vitamin E and total glycoside groups, and all groups received different doses of various materials. The results suggested that the glycosides exhibited protective effects on the hippocampal ultrastructure, and glycosides may play a role in the delay of aging and the prevention and treatment of senile dementia via anti-oxidation (Wang X. et al., 2015). Xu et al. investigated the protective effect of Cistanches Herba alcohol extract on hepatic mitochondria and established an aging rat model caused by D-galactose. Rats were administered Cistanches Herba alcohol extract for 6 weeks. The results indicated that Ca2+-ATP enzyme activity was enhanced, and the MDA content in the hepatic mitochondria was reduced. These results further suggested that the Cistanches Herba alcohol extract effectively protected hepatic mitochondria in the D-galactose aging rat model (Xu et al., 2007). Xu and Liu (2008) examined the anti-aging effect of PhGs isolated from Cistanches Herba. The results confirmed that the PhGs improved learning and memory, exhibited antioxidant activity, and boosted the immune system. The results also demonstrated that the PhGs exhibited anti-aging effects via enhancement of anti-oxidation. The mechanism may be related to the free radical scavenging ability of PhGs. Polysaccharides of Cistanches Herba exhibit the same function as PhGs on anti-aging (Xu et al., 2008; Zhang et al., 2011). Zhang et al. (2014) also investigated a Cistanches Herba extraction 2014 and found that this extract extended life span. The results of studies on echinacoside and acteoside suggest that these components exhibit positive anti-aging effects (Zhang et al., 2008; Xie et al., 2009). Many studies of anti-aging involve Cistanches Herba, but these works are limited because the anti-aging mechanism is not known. There are three possible pathways to anti-aging, including improving immunity function and kidney aging, anti-lipid peroxidation. Immune theory of aging said that the decline of immune function is closely related to the aging organism. Thus, the immune function of the body can indirectly reflect the aging organism in a certain extent. The raised index of thymus and spleen, increased content of IFN-γin serum and decreased content of IL-6, increased capacity of peritoneal macrophage phagocytic and lymphocyte proliferation response always can improve the immunity aging, and then delay the organism aging. The expression of p53 from human fibroblastic cell down-regulated significantly in a dose dependent manner after treatment with echinacoside, and which may be correlated with the up-regulation of SIRT1. The PhGs can scavenge different ROS, including. O–2, H2O2 and ?OH, effectively and protect DNA damage through scavenging ?OH. In addition, the PhGs also can increase the content of RNS- NO, and then reduce the lipid peroxidation. Therefore, the real effective components of Cistanches Herba and what a role in anti-aging are important and appealing future research directions.

    Anti-oxidative and Anti-apoptotic Activity

    Cistanches Herba exhibits anti-oxidative, free radical-scavenging and anti-apoptotic activity via different mechanisms. Recent studies demonstrated the anti-oxidant activity of Cistanches Herba, particularly in the clearing of all types of free radicals in vivo and in vitro, improvement in the activity of anti-oxidant enzymes in the body, and inhibition of the formation of lipid peroxide, MDA, and brown fat (Wang et al., 2001; Wu and Fu, 2004; Luo et al., 2012; Song, 2013). Current studies demonstrated that cell apoptosis or programmed cell death is determined by heredity and is related to oxidation (Martin, 2011). Deng used the MTT assay to examine cell survival rate, agarose gel electrophoresis of DNA, and flow cytometry to detect cell apoptosis. The results suggested that the echinacoside extracted from Cistanches Herba exhibited protective effects on TNFα-induced SH-SY5Y cell apoptosis (Deng et al., 2005). Nerve cell protection exhibits a close connection with the reduction of active oxygen levels in cells, inhibition of caspasc-3 activity and maintenance of a high-energy state of mitochondrial membrane potential. Bao et al. (2010) investigated an extract of Cistanche tubulosa and discussed its anti-oxidant ability. These researchers conducted an in vitro study to compare the anti-oxidative properties of methanol and ethanol extracts. The results suggested that the two extracts exhibited high anti-oxidant ability, and 70% ethanol was the best extraction agent of C. tubulosa to ensure improved anti-oxidant activity (Bao et al., 2010). The PhGs from Cistanches Herba are considered the effective ingredients for anti-oxidative and anti-apoptotic activity in recent studies. The anti-oxidant mechanism is mainly related to the radical-scavenging activity. PhGs compounds, which are mostly provided with different amounts of phenolic hydroxyl, can be used as hydrogen donor to reductive radicals, and then reach to the purpose of radical scavenging. The herbal cistanches extract powder scavenge the free radicals mainly in two ways, including directly involving in the removal of free radicals or blocking their production and regulating the anti-oxidant enzymes related to the free radical metabolism in vivo, such as SOD, CAT and GPX (Ko and Leung, 2007). For another, the Glycosides of Cistanches Herba can prevent the apoptosis of cerebellar granule neurons by inhibiting the activities of caspase-3 and caspase-8. Therefore, the good oxidation resistance and anti-aging ability of Cistanches Herba may be applied to cosmetics. This application may be a new research direction in the future.

    Learning and Memory Enhancement

    Learning and memory are advanced functions of the brain, and these functions are important factors in determining intelligence. Learning and memory impairment is a common symptom in different types of encephalopathy, such as attention deficit and hyperactivity disorder in childhood, adolescent chorea, lobar atrophy disease, neurosis, senile cerebral arteriosclerosis, and dementia. Medicinal research demonstrated that the impairment of learning and memory is closely related to the impairment of synaptic transmission in the brain and the metabolism of neurotransmitters, other substances, and energy in the brain (Chen, 1993). Modern pharmacological studies determined that Cistanches Herba significantly improves learning and memory, and PhGs are the active chemical ingredients of this effect.

    Traditional Chinese medicine shows that learning and memory dysfunction exists in the Yang deficiency model of the spleen and kidney. Therefore, these two models are more suitable for the study of tonics in traditional Chinese medicine. Gao et al. (2005) examined the effects of Cistanches Herba glycosides on the learning and memory of kidney Yang deficiency mice. The results of this study demonstrated that the Yang deficiency symptoms of each dose group improved, and the number of animal deaths decreased significantly. However, the jumping latency of each dose group after hydrocortisone administration was significantly prolonged, and the number of errors during a 5-min period was reduced. Therefore, glycosides improved the learning and memory of kidney Yang deficiency mice induced by hydrocortisone and reduced the death rate of these animals (Gao et al., 2005). The current researchers established a scopolamine-induced learning and memory impairment mouse model to investigate the effects of the PhGs of Cistanches Herba. The results demonstrated that the PhGs of Cistanches Herba enhanced learning and memory (Li, 2011; Liu et al., 2011). Choi et al. (2011) also demonstrated that Cistanches Herba enhanced learning and memory via the induction of nerve growth factor. Vary factors related to cerebrovascular disease induce vascular dementia. This condition is an acquired intelligence-damaging syndrome of cognitive impairment, which is a primary type of senile dementia. Ischemic cerebrovascular disease occurs frequently in many cerebrovascular diseases induced by vascular dementia. Traditional medicine and modern pharmacology demonstrated that PhGs play an active role in neuroprotection (Feng et al., 2013; Liu et al., 2013; Zhu et al., 2013; Zhang, 2014). The reason why Cistanches Herba extract can improve learning and memory is partly due to neuronal cell differentiation, neurite outgrowth and presynaptic formation promoted. Cistanches Herba also improved cognitive behavior related to memory ability. Therefore, Cistanches Herba is a potential candidate for cognitive enhancement owing to its action as a nerve growth factor modulator. However, extensive research is necessary to discover the neuroprotective mechanism deeply. Further studies to determine the specific type of PhGs are expected to play a leading role in improving learning and addressing memory impairment.

  The Importance of Your Car’s Wheel Bearings
Geschrieben von: ptipeias - 26.10.2021, 06:05 - Forum: Generelle Diskussionen - Keine Antworten

The Importance of Your Car’s Wheel Bearings

    A wheel bearing is a crucial part of the wheel assembly that connects the wheel and the axle. It is a set of steel balls (ball bearings) or tapers (tapered bearings), held together by a metal ring. It enables the wheel to rotate smoothly with a minimum of friction. Wheel bearings are safety critical components designed to sustain radial and axial loads caused by gravitation, acceleration, breaking & cornering forces, so they need to be replaced when they stop working properly.

    Faulty installation – inappropriate tools such as a hammer or an impact wrench can cause damage to the exterior and or interior of the wheel end bearing causing the wheel bearing to fail prematurely.  Also, re-using the old accessories such as bolts, nuts, circlips, split pins, seals,… instead of replacing them with new ones can cause the wheel end bearing to operate under abnormal or unsafe conditions, increasing wheel end bearing wear and risk of a car accident. 

    Impact damage or poor road quality – all impacts from driving through a pothole, driving over speed bumps or hitting the curbstone can damage a wheel bearing and reduce its lifespan.

    Poor quality wheel bearing – a wheel bearing is continuously under enormous pressure. Wheel bearings constructed of low-quality materials can have poor heat-treatment, resulting in premature wear and failure.

    Driving conditions – driving through deep water or mud can cause your wheel bearings to fail. Water, mud or other contaminants such as dust or road salt could get past the seals and enter the bearing, polluting the grease and wearing away the bearings.

    Car modifications – fitting bigger or wider rims, tires with lower thread walls, stiffer shock absorbers and suspension springs cause higher loads on the wheel bearing and can accelerate wear. Stick to rims, tires, shock absorbers and springs that are specified by the car manufacturer to minimize the impact on the longevity of the wheel bearings.

    It’s very rare for wheel bearings to fail immediately and completely after you notice the first symptom(s). 

    Having said that, it is best to avoid driving with a worn wheel bearing for any length of time. As we’ve already seen, the wheel bearing is essential for connecting your wheel to your car, and any weakness in this connection could have severe consequences for your drive-axle and steering assembly – as well as for your safety.

    Replacing your wheel bearings

    Despite the fact that modern auto bearing are easier to install than previous generations, correct installation, the usage of appropriate tools and respecting the specified torque values are still essential for maximum performance, durability and safety. Therefore, we recommend having your wheel bearings fitted by a professional mechanic that has the skills and the tools to do the job.  

    The content contained in this article is for entertainment and informational purposes only and should not be used in lieu of seeking professional advice from a certified technician or mechanic. We encourage you to consult with a certified technician or mechanic if you have specific questions or concerns relating to any of the topics covered herein. Under no circumstances will we be liable for any loss or damage caused by your reliance on any content.

    The increasing preference for personal mobility in the post-COVID period will boost the growth of automobiles and components such as agriculture machinery bearing. Additionally, the Indian automotive bearings market is expected to benefit from the shift of production lines of the global automotive bearings manufacturers to the emerging economies.

    Nachi-Fujikoshi, a prominent manufacturer of automotive bearings, has announced its plan to move its production of general-purpose bearings from Japan and Taiwan to Thailand. The move is to reduce production costs for automotive bearings. The recent introduction of production-linked incentive (PLI) schemes for automotive components by the government of India will play a crucial role in attracting global players to set up manufacturing facilities in India.

    The growing demand for light-weight and durable bearings from the automotive industry is leading the prominent bearing manufacturers such as SKF India, Schaeffler India, and NRB Bearings to focus on adopting new raw materials, instead of traditional high-grade steel. For instance, SKF India is manufacturing automotive bearings with alloys that are 10%-12% lighter than traditional bearings made from high-grade steel. The vendors are increasing spending on R&D for the development of lightweight technology. In 2019, Schaeffler India spent 1.34% of revenue on R & D.

    Auto mechanics all over the country take advantage of the public’s limited knowledge about automotive mechanics and engineering. Many drivers assume that their mechanic knows more about the subject of what’s going on with their cars than they do, and feel they have no choice but to trust their “expert” opinions. This happens frequently with recommended part replacements—especially with wheel bearings.

    Wheel bearings play an integral role in your car’s overall functioning and performance. Wheel bearings can indeed become damaged or worn out over time, and under these circumstances it is critical to replace them if need be. However, this is one of the opportunities that automotive shops seize to upsell their product and services. If you’ve ever heard the phrase, “well, if you’ve replaced one you should replace the other” then you’ve likely overpaid for automotive services. In this article, we’ll talk about the importance of wheel bearings for your car. We’ll also discuss when industrial bearing should realistically be replaced and what you can do to keep your car in excellent condition moving forward.

    Wheel bearings are critical for your car’s performance. They reside inside a wheel to help the wheel rotate smoothly and competently by decreasing the amount of friction created by other various parts of the drivetrain system. When wheel bearings become damaged or require replacement, it can lead to devastating effects if not replaced properly. When wheel bearings are not replaced with the proper tools, equipment, and attention to detail, it can cause further, more significant damage to the part over time. Bearing assemblies are a simple mechanical design, but their function is essential to the smooth rotation of your wheels. When one wheel bearing goes bad, it can cause a concerning noise coming from your wheel, especially at higher speeds, and it can cause other gradual side effects to your alignment and wheel balance.

    When Wheel Bearings Need to Be Replaced

    Wheel bearings are made of tough, durable material, which means that they generally last a long time in cars. However, they can still require replacement under the right circumstances. If you have noticed any strange noises coming from your wheel as you’re driving, consider if any of the following could apply to your car:

    Accident Damage

    Although wheel bearings are sturdy parts alone, the impact from an accident can cause the auto wheel bearing to become damaged. After the rough impact of a car accident, especially if the accident was a side impact, it’s common to encounter broken seals in the bearing assembly, which leads to a contaminated bearing. When grease gets inside through a broken seal, it causes too much friction, which can chip the bearings and cause them to begin to malfunction.

    Improper Installation

    Wheel bearings need to be replaced under somewhat rare circumstances, including when they are replaced improperly to begin with. Whenever a wheel bearing or a bearing assembly is replaced, the wheels should be balanced and aligned in order to prevent further damage. This can save you a lot of money in the long run, all you need to do is find an honest mechanic!

    Engineering Defect

    Automotive engineering is not a perfect science; many vehicle parts come with defects and wear issues. Cars that are well designed generally have fewer defects, but some cars were simply manufactured with a propensity for wheel bearing issues somewhere throughout the course of the vehicle’s life.

    Usually automotive shops recommend that if one wheel bearing becomes damaged that the corresponding wheel’s bearing should also be replaced (i.e. front driver’s side and front passenger’s side). While this might make sense for the sake of symmetry, depending on the condition of the other wheel bearing it is usually not necessary to replace both for this reason alone. Here at Santa Barbara Autowerks we pride ourselves on honesty and integrity; we don’t offer services or replacements to our clients unless they’re necessary for their safety or will save them money and energy in the future. As one of the highest quality leading dealership alternatives in Santa Barbara, CA, we tailor our services to German-engineered vehicles, making us experts in German vehicle repair and maintenance. We are passionate about and highly experienced in working with cars like Audi, BMW, Mercedes, Porsche, MINI, and Volkswagen. If you think your German car’s wheel bearing might need to be replaced, please contact us for an honest, expert opinion without a hidden agenda.

  Industry Developments: Extrusion Profile Heat Sinks
Geschrieben von: ptipeias - 26.10.2021, 06:03 - Forum: Generelle Diskussionen - Keine Antworten

Industry Developments: Extrusion Profile Heat Sinks

    Extruded metal heat sinks are among the lowest cost, widest used heat spreaders in electronics thermal management. Besides their affordability, extruded heat sinks are lightweight, readily cut to size and shape, and capable of high levels of cooling.

    Most extruded heat sinks are made from aluminum alloys, mainly from the 6000 alloy series, where aluminum dominates. Trace amounts of other elements are added, including magnesium and silicon. These alloys are easy to extrude and machine, are weldable, and can be hardened.

    Common alloys for extruded heat sinks are the 6063 metals. These can be extruded as complex shapes, with very smooth surfaces. 6061 aluminum is also used for extrusions. Its tensile strength (up to 240 MPa) is superior to 6063 alloys (up to 186 MPa). In addition to heat sinks, these aluminum alloys are popular for architectural applications such as window and door frames. 

    The surfaces of these metals can be anodized to replace their naturally occurring surface layer of aluminum oxide. Anodizing provides more heat transfer, corrosion resistance and better adhesion for paint primers. It is an electrochemical process that increases surface emissivity, corrosion and wear resistance, and electrical isolation.

    The Extruding Process

    Aluminum alloys are popular for extruding as heat sinks because they provide both malleability and formability. They can be easily machined and are as little as one-third the density of steel. This results in extrusions that are both strong and stable, at a reduced cost relative to other materials.

    The aluminum extrusion process starts with designing and creating the die that will shape the heatsink extrusion. Once this has been done, a cylindrical billet of aluminum is heated up in a forge to high temperatures, generally between 800-925°F (427-496°C). Next, a lubricant is added to the aluminum to prevent it from sticking to any of the machinery. It is then placed on a loader and pressure is applied with a ram to push heated aluminum through the die.

    During this process, nitrogen is added in order to prevent oxidation. The extruded part will pass completely through the die and out the other side. It has now been elongated in the shape of the die opening. The finished extrusion is then cooled, and if necessary, a process of straightening and hardening creates the finished product.

    They can be cut to the desired lengths, drilled and machined, and undergo a final aging process before being ready for market. [4]

    Finished heat sinks typically come with anodized surfaces, which can enhance their thermal performance. Alternatively, a chromate finish provides some corrosion protection, or can be used as a primer before a final paint or powder coating is applied. [5]

    Shapes of Extruded Heat Sinks

    Extrusions tooling heat sink profiles range from simple flat back fin structures to complex geometries for optimized cooling. They can be used for natural (passive) or forced convection (active) with an added fan or blower. Extruded profiles can also include special geometries and groove patterns for use with clip or push pin attachment systems.

    6063 aluminum alloy has a thermal conductivity of 201-218 W/(mK). Higher tensile strength 6061 aluminum’s thermal conductivity ranges from 151-202 W/(mK).

    Besides choosing the aluminum alloy, selecting an optimal extruded heat sink should factor in its overall dimensions and weight, the specified thermal resistance, and the extrusion shape (flat-back, flat-back with gap, hollow, double-sided, etc.). [7]

    Extruded heat sinks can be designed with very thin, and thus more, fins than other sink types. They can be extruded with aspect ratios of around 8:1, which can greatly optimize heat sink performance. A heat sink’s aspect ratio is basically the comparison of its fin height to the distance between its fins.

    In typical heat sinks the aspect ratio is between 3:1 and 5:1. A high aspect extruded heat sink has taller fins with a smaller distance between them for a ratio that can be 8:1 to 16:1 or greater.

    Linear Cellular Alloys (LCAs) are metal honeycombs that are extruded using powder metal-oxide precursors and chemical reactions to obtain near fully dense metallic cell walls. Either ordered periodic or graded cell structures can be formed. In this work, the performance of heat sinks fabricated from stochastic cellular metals is compared to that of LCA heat sinks. Flash diffusivity experiments are performed to determine the in situ thermal properties of cell wall material. The pressure drop for unidirectional fluid flow in the honeycomb channels and the total heat transfer rate of LCA heat sinks are experimentally measured. These measurements are compared to values predicted from a finite difference code and commercial computational fluid dynamics (CFD) software.

    A three-dimensional finite element model of a multichip module (MCM) has been developed by using ANSYS? finite element simulation code. The model has been used for thermal characterization of the module. In addition, optimum dimensions of an external heat sink, which maintains the specified device’s junction temperature within desired operating temperature limits, are determined as functions of air flow rate and power density of surrounding semiconductor devices. Parametric studies have been performed to study the effects of heat sink height, width and length on junction-to-ambient thermal resistance of a high power application specific integrated circuit (ASIC) device found in the MCM assembly. A set of curves are generated to select either heat sink dimensions or air speed for a given design requirements. Influence of the power output of surrounding devices on the thermal performance of the high power ASIC device is also assessed. The predicted results indicate that the ASIC device’s junction temperature as well as junction-to-ambient resistance increase as the power of the surrounding packages increases. This effect diminishes if a sufficiently large heat sink is used to cool the package.

    There are different metals with different properties, some metals are used for luxury purposes such as diamond and gold, others are used for building purposes such as brass, nickel, steel, copper, and many more. Every piece of equipment, to work efficiently, requires a good building block. And while engineering important components it is extremely important to look at the qualities of the material that are going to be used and it is also important to keep a check on the factors that can affect the material, Aluminium in this case.

    Aluminum is considered the best option for engineering heat sinks because it is cost-friendly, lightweight and most importantly has great thermal conductivity.

    Which Metals Conduct Heat The Best?

    Copper and Aluminium among other metals have the highest thermal conductivity. Before using metal in any sort of application it is very important to check the thermal conductivity of that metal. The rate of thermal conductivity helps to decide which metal should be used for a specific purpose. Aluminum is a great conductor of heat, which makes it useful for constructing heat exchangers. On the other hand, steel is a very poor conductor of heat which makes it useful for high-temperature environments. This is why Aluminum is preferred to be used in constructing a heat sink.

    Thermal Conductivity

    Heat transfers in three ways; radiation, convection, and conduction. Thermal Conduction is a process where two objects of different temperatures come into contact with one another and when they meet fast-moving molecules from the warmer object transfer the energy to the slow-moving molecules in the cooler object.

    Aluminum heat sinks

    Aluminum is considered beneficial for electrical device managers. It is a great metal to be used in the construction of critical power cooling systems. Improvement in extrusion profile technology has made it possible to engineer heat sinks which call for a blend of greater strength and lighter weight.

    Aluminum in comparison with other metals such as copper has lower thermal conductivity but it is far too difficult to extrude them into the shape of a heat sink. Secondly, Aluminium is a lightweight metal, which is also another property that other metals do not possess.

    Heat Sinks

    Heat sinks are mainly used inside computers to cool down the CPU(Central Processing Unit), they are also used in lighting devices, LEDs, and power transistors.

    Heat sinks are designed in a way to have a large surface area to maximize the contact with the fluid medium, such as air or liquid coolant to absorb heat and direct it away from the device.

    Aluminum alloys are preferred to be used in constructing heat sinks. This is because Aluminium is lighter and cheaper than copper.

    How does a heat sink work?

    Computers heat up and if the heat is not removed from the device it can actually damage the entire system. To direct the heat away from the system it is necessary to install a heat exchanger. Heat sink directs the heat away from the computer, it does this by transferring the heat generated in the system to a fluid medium such as air or a liquid coolant, whereby it is directed away from the device. 

    What is the purpose of a heat sink?

    The purpose of a CPU heatsink is basically the maintenance of the computer. Without a heat sink, the system can overheat and therefore can stop working efficiently. To ensure smooth working of the device it is important to install a heat sink to direct generated heat away from the system and prevent overheating.

    Why is a heat sink important?

    As stated above, a skived fin heatsink is vital for extending the life of a lighting device. It absorbs unnecessary heat and directs it away from the device. Heat sinks increase the efficiency of the device by removing the excess heat which is why it is an extremely important component. Without a heat sink, computers or other related devices can expire quicker. Heat sinks keep the system cool and provide a good working environment to the other components which heat up quite quickly.

    Factors Affecting Aluminum Heat Sink Quality

    Quality Requirements For Ingots

    The blend of alloys in an ingot must be strictly monitored and controlled, for purification purposes. To make sure that the structure and properties are not imbalanced it is important to make sure that the alloys are homogenized. The surface of the ingot must be smooth and there must not be any sand. The end of the ingot must be flat.

  Benefits Of Automatic Bagging Machines
Geschrieben von: ptipeias - 26.10.2021, 06:02 - Forum: Generelle Diskussionen - Keine Antworten

Benefits Of Automatic Bagging Machines

    An Automatic Bagging Machine is a mechanism that automates the packaging process in production. The packaging machine automatically inserts the product in a bag or a pouch and seals it. By installing Automatic Bagging Machines in a company’s packaging operations, companies have several advantages on expenses and productivity. Businesses, large or small, are always looking for ways to maximize time and labour while reducing their production cost. Choosing the right type of Automatic Bagging Machines that suit business needs can help fulfill these objectives. There will be increased productivity, enhanced consistency, reduction in quality issues, and reduced workstations. Moreover, you will notice the improvement in packaging accuracy and the safety of both products and workers. You can install Automatic Bagging Machines in almost any production facility and use them to pack products such as cosmetics, pharmaceuticals, mechanic parts, food, and beverages.

    Benefits of Installing Automatic Bagging Machines

    There are numerous benefits associated with the installation of an Automatic Bagging System in production facilities. Here are some of the main advantages.

    Enhanced Efficiency

    Integrating Automatic Bagging Machines will help improve the efficiency of operations and your warehouse and reduce potential quality issues.

    Customisable Automatic Bagging Machines

    The Automatic Bagging Machines are customisable mainly to the production line requirement. With automated bagging, you can pack individual parts of a product. Automatic Bagging Machines are also suitable to be used with different packaging materials. Customize the colouring and size of the bags and preprinted styles.

    Product Safety

    In many instances, insufficient packaging may adversely affect the lifespan of goods. This is a common occurrence with products packaged through manual operations. An Automatic Bagging Machine will prevent mistakes. Automation will improve the quality of your Paper box packing machine and eliminate the chances of damage to goods or reduced shelf life.

    Improved Productivity

    Automatic Bagging Machines will reduce the chances of errors in the production line. Compared with manual labour, the productivity level will show improvement due to the speed and consistency associated with automatic bagging systems. Whether you use semi or fully Automated Bagging Machines, there will still be substantially more quantity produced than hand-packaging operations. The Automatic Bagging Machines involve loading a film roll or bagging on the system and pack one product after another quickly. Only when the bagging material runs out will it need someone to refill, saving time and money.

    Financial Benefits of Automatic Bagging Machines

    Cost savings and coming up with new solutions are always one of the top priorities of businesses. Automatic Bagging Machines can be a cost-effective investment in the long term. Not only will it improve production volumes but significantly reduce the workforce requirements. Reduce the cost of labour for sorting, processing, folding, and banding the products. For instance, if 20 employees currently working on your production lines handling the packaging and deploying an automatic bagging infrastructure will save you money by reducing the need to have 20 employees working on packaging and increasing production volume translating into increased revenue.

    Improved Sustainability

    One of the best ways is to reduce the need for transportation in your production process. Automatic Bagging Machines produce uniform packaging that allows more products to fit fewer trucks than hand-made inconsistent bagging. The packaging method helps you ship more items with a lower carbon footprint. Save cost on fuel budget while reducing greenhouse gas emissions.

    Saving on Material Costs

    Most companies have packaging requirements ranging from different bagging sizes. Instead of investing in purchasing and inventory various bags, Automatic Bagging Machines allow you to buy film rolls to make bags of different sizes. Moreover, using thinner gauge packaging film, there can be some additional savings on material cost.

    How to Evaluate Best Automatic Bagging Machines for Your Company

    Not only is it an effective method, but it also simplifies your packaging operations while saving money on many fronts. However, you must pay due diligence when looking for the right automatic bagging equipment for your company. Speak to the manufacturer about your specific needs and ways to improve the system’s efficiency. Moreover, you will always need employees to operate the machinery. Thus, make sure you pick something easy to use that requires minimal training.

    A packaging machine for penny carton box packing machine, such as bagels, bread, donuts, in pre-made plastic bags includes an endless chain carrying a plurality of regularly spaced bag grippers, the chain being entrained about sprocket wheels to define first and second flights. The bag grippers pick up a topmost bag from a stack while traversing the first flight and carry it to a bag filling station aligned with the second flight. An infeed conveyor has a plurality of transversely extending product trays containing the articles to be packaged which are transported with intermittent motion to the bag filling station in synchronism with the bag grippers. While the tray is stationary, movement of the bag gripper along the second flight draws the bag over the product-filled tray present at the bag filling station. A product pusher, synchronized with movement of the bag grippers and with the infeed conveyor, pushes the bagged products off the infeed conveyor onto a take-away conveyor.

    This invention relates generally to high-speed packaging equipment, and more particularly to a machine for bagging a stack of articles oriented in side-by-side relation into pre-made bags.

    II. Discussion of the Prior Art

    Certain articles or products are of a size and shape that may make it difficult to package on a high-speed basis. For example, bagels or donuts, because of their size and shape, make them somewhat difficult to mechanically manipulate so that they can be placed in polyethylene bags in a stacked relationship. This is referred to in the industry as "penny packing" because of the similarity to the way in which coins are loaded into paper coin wrappers. While loaves of sliced bread have been successfully wrapped by machines such as described in U.S. Pat. No. 3,868,807 and manufactured by Foremost Packaging Machine Company of Woodinville, Wash., efforts to mechanize the penny paper box packing machines, donuts, and the like, at high speeds have proven to be a challenge because of their more irregular shape.

    While the present invention has been devised to penny pack food items, like bagels and donuts, those skilled in the art will appreciate that the machine to be described hereinbelow can also be used for packaging other food items, e.g., bread, as well as non-food items, by merely making minor modifications to the shape and size of various machine parts.


    It is accordingly a principal object of the present invention to provide an improved apparatus and method for inserting products in stacked relation within pre-formed plastic or paper bags.

    Another object of the invention is to provide an improved packaging machine for placing articles, such as bagels, in plastic or paper bags on a continuous basis with very low machine down-time for cleaning, adjustment, maintenance and repair.

    Yet another object of the invention is to provide a high-speed packaging machine for face masks multiple pieces plastic bags packing machine in pre-made bags that is simple in construction and which can be manufactured at a relatively low cost.

    Still another object of the invention is to provide an improved packaging machine operating with a cycle time capable of producing bagged articles of a predetermined number of items per bag at a rate exceeding one per second.


    The foregoing objects and advantages of the invention are achieved by constructing a packaging machine that includes a frame with an endless chain disposed about sprocket wheels mounted on the frame so that the chain defines first and second flights. The chain is adapted to be driven by an electric motor, and secured to the chain are a plurality of bag grippers that are designed to pick up a topmost bag from a stack of pre-formed bags as the gripper traverses one or the other of the first and second flights and then carries the bag to a bag filling station located in the other of the first and second flights. A product infeed conveyor transports trays of products to be packaged to the bag filling station where the products are temporarily held stationary and are oriented in a horizontally stacked relation. A bag carried by a bag gripper is drawn over a tray of products disposed in the bag filling station as the bag gripper moves in the other of the first and second flights.

    The packaging machine further includes a product take-away conveyor whose head end is positioned adjacent the bag filling station. A product pusher synchronized with the movement of the bag gripper and the product infeed conveyor is used to displace bag covered products from the bag filling station onto the product take-away conveyor. The desired synchronization is achieved by providing a rotatable indexing cam that is coupled to the electric motor driving the endless chain to which the bag grippers are affixed. The indexing cam has a cam profile thereon that cooperates with a cam follower that is operatively coupled to the infeed conveyor for controlling acceleration and deceleration thereof in a controlled fashion that reduces the effects of inertia on the products being carried. The product pusher is driven in a timed, reciprocating fashion through the bag filling station by means of a chain driven roller that periodically engages a shuttle mechanism to which the pusher is attached.

    Referring first to FIG. 1, there is indicated generally by numeral 10 the packaging machine comprising a preferred embodiment of the present invention. It is seen to include a structural frame, portions of which are identified by numeral 12. It may be fabricated out of steel tubes having a generally rectangular cross-section. The frame 12 is covered by sheet metal panels configured to shield the internal working mechanism of the packaging machine 12. Specifically, a top panel 14 is affixed to the frame 12 as are left and right end panels 16 and 18, respectively. A front panel 20 is partially broken away to better reveal certain internal working mechanism which will be described in greater detail hereinbelow.

    The partial perspective view of FIG. 3 is helpful in understanding the manner in which the bag grabber assemblies 28 are coupled to the parallel, spaced apart chains 30 and 32. Specifically, links of the two chains directly across from one another are replaced with specially shaped links 68 and 70 having an outwardly projecting stub with an aperture therethrough for receiving the cylindrical support arm member 26 therethrough. It can be appreciated that by virtue of this connection, the arm 26 at all times remains parallel to the shafts supporting the chain sprocket wheels throughout the entire orbital path defined by chains 30 and 32.

    Affixed to the end portion 72 of the support arm 26 is a cam follower mounting block 74 to which a pair of cam rollers 76 and 78 are journaled. The cam rollers cooperate with an elongated cam member 80 that is divided into an ascending ramp portion 82 (FIG. 3), a horizontal cam portion 84 (FIG. 2) and a descending ramp portion 86 (FIG. 2). The cooperation between the cam rollers 76 and 78 and the cam member 80 insures that the support arms 26 will remain aligned with the orbital slot 24 formed in the front cover member 22 to maintain the orientation of the bag grabbers; also the chains 30 and 32 would otherwise sag between their support points at the several sprocket wheels.

    With continued reference to FIG. 3, the mechanism used to assist the cam mounting block 74 in traversing the arcuate path about the sprocket wheels 46 and 56 will be described. Mounted to the frame proximate the pairs of end sprocket wheels 42, 54 and 46, 56 is a journal bearing 88 supporting a stub shaft 90 to which is affixed a lifter arm 92 and a chain sprocket wheel 94. A short, endless chain 93 is deployed over the sprocket wheel 94 and about a further sprocket wheel 96 affixed to and rotatable with the shaft 48. An identical assembly is associated with the end sprocket 42.

    The axle 98 on which the cam roller 76 is mounted extends laterally outward and affixed to the end thereof is a further roller 100. This roller 100 is adapted to be received in a arcuate groove 102 formed in the end of the lifter arm 92 and it also cooperates with a semicircular recess 104 formed in a guide plate 106 also mounted to the frame.

    When it is recognized that the bag grabbers 28 are spaced from one another by a predetermined distance equal to an integral number of revolutions of the end sprocket wheels 46 and 56, it can be appreciated how the arm 92 can be made to arrive at a precise time to engage the roller 100 so as to provide support to the cam follower mounting block 74 to maintain it in a horizontal disposition as it traverses the turn and again positions the elongated cam member 80 between the cam follower rollers 76 and 78.

    FIG. 4 is a detailed drawing of one of the bag grabbing mechanisms forming part of the packaging machine 10 of FIG. 1. The bag grabbers 28 each comprise first and second curved sheet metal jaws 102 and 104 that are suspended from the arm 26 that projects laterally outwardly through the slot 24 formed in the front panel 22 of the paper box gluing machine. The lowermost jaw 102 is welded or otherwise positively affixed to a shaft 106 which passes through first and second clamping rings 108 and 110. The clamping ring 110 is welded at 112 to a similar clamping ring 114 assembled onto the end of arm 26. This allows the entire assembly 28 to be adjusted in the lateral or horizontal direction by loosening the cap screws 116 and sliding the ring 114 along the shaft 26 to a desired position and then retightening the screw 116. Likewise, vertical adjustment of the bag grabber can be achieved by loosening the cap screw 118 on the clamping ring 110 and shifting the shaft 106 before retightening that cap screw.

    The clamping ring 108 has welded to it a bearing sleeve 120 and passing through the bearing sleeve is a cylindrical rod 122 to which the jaw 104 is attached. Secured to the other end of the rod 122 is a crank assembly including a hub 124 and a crank arm 126. Journaled to the end of the crank arm 126 opposite the hub 124 is a cam follower roller 128. A tension spring 130 is operatively coupled between the crank arm 126 and a pin 132 affixed to the shaft 106 to normally spread the jaws 102 and 104 apart from one another.

  Neutron and gamma radiation shielding properties
Geschrieben von: ptipeias - 26.10.2021, 06:01 - Forum: Generelle Diskussionen - Keine Antworten

Neutron and gamma radiation shielding properties

    High performed new heavy concrete samples were designed and produced that absorption parameters were determined for gamma and neutron radiation by using Monte Carlo Simulation program GEANT4 code. In the sample production, many different materials were used such as; chromite (FeCr2O4), wolframite [(20Fe,80Mn) WO4], hematite (Fe2O3), titanium oxide (TiO2), aluminum oxide (Al2O3), limonite (FeO (OH) nH2O), barite (BaSO4), materials. Furthermore, calcium aluminate cement (CAC) was utilized for high temperature resistant. In the current study, five different new heavy concrete samples were produced then physical and chemical strength of them tested. High-temperature-resistant tests were made at 1000°C and good resistance against high temperature was observed. Neutron equivalent dose measurements were made for by using 4.5 MeV energy 241Am-Be fast neutron source. Results compared with paraffin and conventional concrete. It was found that the new heavyweight concretes had the better absorption capacity than paraffin and conventional concrete. Gamma radiation absorption measurements also were carried out at the energies of 160, 276, 302, 356, and 383 keV by using 133Ba point radiation source. It has been suggested that the new produced concretes can be used for radiation safety in the nuclear applications.

    Radiation is often used in applications such as in energy production, in medicine diagnosis and treatment, in material research and investigation. In addition, it is also used in such areas as agriculture, archeology (in carbon determination), space exploration, military, geology, and many others (U.S. NRC, 2010). Radiation leaks may occur during these applications (Lamarsh, & Baratta, 2001); therefore, it must be properly shielded. In radiation shielding works, conventional materials such as concrete, steel, alloy, ceramic, glass, and polymers are widely used (Aygün et al., 2019; Kumar, Sayyed, Dong, & Xue, 2018; Sayyed, Akman, Kumar, & Ka?al, 2018). In these studies, concrete is among the most widely used materials (Li et al., 2017). Concrete is a composite material which glued in such a way that aggregate particles (sand, gravel, stone, and filler) with cement or a binder. Traditional concrete is not as effective in nuclear shielding material radiation, but it is a very common used building material. The traditional concrete lead bricks for radiation shielding characteristic may vary and is dependent on the chemical composition of the concrete. New types of concrete samples have been developed by different the aggregated used for preparing concrete, depending on the available natural and artificial materials (Mukhtar, Shamsad, Al-Dulaijan, Mohammed, & Akhtar, 2019; Chen, 1998). Heavy concrete is the most common material used in radiation shielding equipment. Heavy concrete is obtained by adding high-density aggregates into normal concrete. Normal-weight concrete density varied between 2200 and 2450 kg/m3 while heavy concrete’s density is ranging from about 2900 and 6000 kg/m3 (Nawy, 1997). Some natural minerals such as hematite, magnetite, limonite, serpentine, siderite and barite can be used as aggregates in heavy concrete production. In literature, numerous experimental and theoretical researches have been conducted to develop new heavy concrete. Different minerals like siderite, limonite were used to produce heavy concrete in order to provide gamma radiation shielding. It was reported that the gamma radiation absorption capacity of heavy concretes is high (Basyigit et al., 2011). Boron-containing multi-layered new heavy concretes were produced and radiation shielding properties were determined. It is reported that these concretes are very high in 14 MeV neutron absorption capacity (Sato, Maegawa, & Moshimatsu, 2011). In a different study, some metal oxides such as Al2O3, AS2O3, BaO, CaSO4, CdO, Cr2O3, CuO, Fe2O3, K2O, MgO, MnO, Na2O, NiO, P2O5, PbO4, SrO, TiO2 was used in the heavy concrete production, and it was stated that the use of these new heavy concretes in nuclear reactors is appropriate (Abdo, 2002; Erdem, Baykara, Do?ru, & Kulu?ztürk., 2010; Mortazavi, Mosleh-Shirazi, & Baradaran Ghahfarokhi et al., 2010). Seltborg et al.produced heavy concretes by using, such as calcium (Ca), strontium (Sr), barium (Ba), radium (Ra) magnesium (Mg) elements. They determined these heavy concretes can be used to shield gamma and neutron radiation in nuclear reactors (Seltborg et al., 2005). In the present study of tungsten oxide (WO3) gamma radiation mass attenuation coefficient in the concrete, the effect on the coefficient was investigated. Appropriate geometry found by using MCNPX and XCom simulation programs. It is found that shielding properties when nanoparticle WO3 doped in concrete more than microparticle WO3 (Tekin, Singh, & Manici, 2017). In another study, high-density concrete (ρ = 4.71 g/cm3) was made by using steel balls and in aggregate the debris of the demolished concrete buildings in the earthquake region in Fukushima. Good shield properties were determined this of heavy concrete and it is shown that can be used in storage radioactive waste (Sanjay, Yusuke, Kimura, Fujikura, & Araki, 2018). Heavy concrete was made using lead-zinc slag waste instead of sand which can be used gamma radiation shielding. Shielding and strength properties were investigated of this concrete and compared with conventional concrete. It is reported that lead–zinc slag waste concretes better radiation shielding and strength characteristic than conventional concretes (Mohamed, 2017). Medical cyclotron is a system designed for radiopharmaceutical production, which high-level radiation emit. Shielding wall thickness was calculated by using Monte Carlo simulation when cyclotron system used to operate that may occur radiation. Consequently, for shielding, radiation at 200-cm-thickness concrete wall need was determined (Jang, Kim, & Kim, 2017). Some mining wastes suitable for heavy concrete production. For instance, Gallala et al. have produced new heavy concrete by using barite-fluorspar mine waste (BFMW) aggregates and investigated their gamma radiation shielding, mechanical strength properties. The results clearly showed when ratio 25% BFMW added to concretes has better gamma radiation shielding and compressive strength properties than conventional concrete (Gallala et al., 2017). Tekin et al., using MCNPX code, demonstrated that high strength concrete containing nanoparticles of WO3 and Bi2O3 had enhanced shielding capacity for gamma radiation (Tekin, Sayyed, & Issa, 2018). Five different concrete types were made using magnetite aggregates and 0%, 2%, 4%, 6%, and 8% of titanium dioxide (TiO2) nanoparticles for nuclear power plant shielding material. Some of the protecting parameters such as MAC (mass attenuation coefficients) HVL (half-value layer), TVL (tenth value layer), and linear attenuation coefficients (LAC) were determined for 662, 1173, and 1332 ?keV energy of gamma ray used. It is reported, the significant effect on radiation shielding properties occurred within 8% of TiO2 nanoparticles (Iman et al., 2019). Some natural minerals can be using heavy concrete in production. Different concrete types which including natural perlite mineral and B4C have been experimentally investigated and gamma radiation shielding parameters have been determined (Agar et al., 2019)

    In this study, new concrete samples were designed and produced using Monte Carlo simulation program Geant4 code. The production of heavy concrete for radiation shield was made based on the concrete production process such as mixture proportion, ratio of water to cement, cement hydration. Furthermore, new concrete candidates with good radiation shielding ability at high temperature have been produced and it has been shown that raw materials such as chromite, wolframite can be used in production.

    In Monte Carlo simulation program, the Geant4 code is used to determine the interactions between radiation and materials. In addition, it can be used to predict nuclear events that may occur at the point of radiation and detector interaction. Geant4 software is the most developed, for analyses biological effects of radiation-induced and their modification nuclear shielding engineering. Also, Monte Carlo program Geant4 to simulate can be used to predict the transport, accumulation of incident particles through the walls of a nuclear power plant (Agostinelli et al., 2003). It is used in applications in nuclear physics, particle accelerator designing, space investigation, and medical physics. Detailed information can be found at

    2.2. Sample preparation

    New heavy concrete samples were produced by using different natural aggregates such as chrome ore (FeCr2O4), wolframite [(Fe,Mn)WO4], hematite (Fe2O3), limonite (FeO (OH) nH2O), barite (BaSO4). Nickel oxide (NiO) was used to fill the pores that could form in the concrete. The chromium ore (FeCr2O4) mineral has a density of average 4.79 g/cm3 and it melts in temperature 1650–1660°C (Jay, Meegoda, Zhengbo, & Kamolpornwijit, 2007). The chrome ore sample was taken from the Kayseri city Yahyal? district chrome mine. This chrome ore contains such minerals 53.19% Cr2O3, 16.80% MgO, 11.15%Al2O3, 15.11%Fe, 2.72%SiO2, 0.007%S, and 0.005% P according to Eti (Chromium Ferrochrome Foundation). Wolframite is a mineral with a density of 7.1–7.5, average 7.3 g/cm3 and 11.70% MnO, 16.85% FeO, 71.46% WO3 including (Tolun., 1951). This ore was obtained from an Uluda? tungsten mine, which is located in the province of Bursa and is approximately 2200–2300 m high from the sea. According to the pioneering simulation work, both gamma and neutron radiation absorption cross-sectional values were determined higher in chromite and wolframite minerals. Furthermore, these minerals have both refractory properties and high mechanical strength and plenty of reserves. Therefore, these minerals were used in the production of heavy concrete. Hematite, titanium oxide, aluminum oxide, limonite, siderite, barite, materials are always used materials for the production of heavy concrete, but for that, the chromite and wolframite minerals are not very commonly used. The usage of natural chromite and wolframite minerals provided will be with this work in the nuclear industry. Chromium oxide (Cr2O3) was used to fill capillary cavities that may form in concretes. When concrete components were selected, the high macroscopic cross-sectional values were taken into account.